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Abstract—in order to obtain accurate closed-form representa- Il. THEORY

tions of the microstrip Green’s functions, it is often necessary to . . . .
find the locations of the proper and improper surface-wave poles. 1 he following theorems to be introduced will form the basis

In this paper, we present an efficient and robust iterative algorithm ~ Of the proof of convergence and completeness of the proposed
based on contraction mapping, which can locate all the proper and algorithm.

improp(_arsolutions of_the ch_aracteristics equations of the grounded Theorem 1 (Fixed Point Theorem):et M be a mapping of
dielectric slab. The dielectric may also be lossy. any metric spacé into itself. z; is then called a fixed point of

Index Terms—Contraction mapping, Green's function, A in R if it satisfies the following equation [9]:
grounded dielectric slab, improper poles, iterative procedure,

microstrip problems, poles and zeros, proper poles, surface-wave zp = Mzy. (1)
poles.

If M has the additional property that for any, 2, € R

|I. INTRODUCTION Mz — Mas| < |21 — 2] )

ARIOUS analytical and semianalytical techniques have . . . ,
been developed over the past few decades for obtaini?tugnM is known as a _contragtlon mapping, and_ will always
closed-form spatial-domain Green’s function for microstrip gel2ve one and only one fixed point. This technique is often called
ometry [4]—-[8] from the spectral-domain formulation. the methad Of successive approximations.
In the spectral-domain formulation, the poles of the Green’s In Qe”efa" itMis a contraction mapping with domaity the
function for the microstrip correspond to the surface- arﬁ?luuon ofz = Mz is given by
leaky-wave modes. In most of these analysis, the extraction of

! ! =19 ! zp = lim M7z €))
some of these poles is usually required. This is a very important n—0o0
step to derive accurate closed-form Green’s functions when tRiere, is any point ins.
source point is relatively far from the field point. Theorem 2:If M is a continuous mapping in a metric space

Recently, with the introduction of new geometries such a3 that mapsinto itself, then it is a contraction mapping if its

low-temperature cofired ceramics (LTCC), it becomes necefst derivative exists and has a magnitude of less than unity
sary to consider thick substrates, which can support many sgroughout the regior, i.e.,

face wave modes, thereby highlighting the need to find a tech-
nigue to extractthese poles. Various authors [1], [2] have applied ‘ I(Mz)
the Newton—Raphson method to the problem, and usually con-

Oz
sidered only the case where the substrate is Iossless.. This theorem can be proved by noting that any line trans-
_However, for substrates that are thick and lossy, it may B&meq by such amapping will have a shorter length if the above
difficult to provide suitable initial guesses for some of the poleg . yition is satisfied.
especially those that may lie very close to one another. Theorem 3: Let M be a continuous function that satisfies the
Gugliemi and Jackson [3] have used an asymptotic methRﬂlowing:
that is only valid for low-frequency approximations.

<1, forall z € R. (4)

In this paper, a systematic algorithm that can locate all the IMz +
. <1, z€R (5)
surface- and leaky-wave poles is proposed. dr
The proposed algorithm is based on a well-known technique IMz B
in functional analysis, known as “contraction mapping.” We oz 21, v €R. (6)

shall also prove the completeness of this method and, hence,
show that the location of all the poles (proper and improper) &he inverse operatokt*, if it exists, will then satisfy the fol-
such a Green’s function can be found using this method. Tiving:

substrate is assumed to be lossy. ‘ M-z

dx

<1, a€MR . @)
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or h is the thickness of the substrate ands the complex relative
lim M™"z =z, r e N.. permittivity of the substrate.
n—oo As the zeros of the above equation is independent of the
Proof: Suppose that there does not exist such a neighb8fanch ofu; selected, we can make the substitution= u,/
hood. Then to obtain
oMz 2 = K?sinh? 13
|M (20 + 62) — 20| > |62 ;»‘ A;:O >1 ®) v S (13)
and ) where
. OM ™1z K = kohv/e, — 1 (14)
|M (2’0 + 62) — Zo| > |6Z| = T > 1. (9) 0 r .

Hence, taking square root of the components, we obtain for
Due to (8),z0 € R, and due to (9)z0 &€ MR~. However, the two branches
sinceMzy = 2o, 20 € MR~. Hence, a contradiction resulis.
It follows from this theorem that, if there exist a fixed point w = K sinhw. (15)
for M in R, then at least one of the operatbt or A~ must
be convergent to the fixed point, aboutaneighborhood of the

fixed point. o . . w = arcsinh —. (16)
Theorem 4 (Continuity of Solutions)fhe set solutions of K

the characteristics equations, including those in the second RieBy a careful analysis of the way the functions are mapped
mann sheet, is a continuous function of all the parameters, @ thearcsinh function, we postulate that the solutions can be

Taking the inverse of (15), we obtain

cept at possibly discrete points. o _obtained by constructing contraction mappings out of each dif-
~ The can be shown by rewriting the characteristics equatigdent branch of the function such that the fixed points of these
into the following form: mappings are the solution of the characteristics equation. The
mappings are classified into the following four main categories.
flaw, K) =k Case 1:
whereK can be any one of the parameters anpdis a solution £,w = arcsinh w (17)
of the characteristics equation. It is known that the funcfias
analytic in terms of: and K, and if the second Riemann sheet is Re[£1w] 20 (18)
included, then there is no branch cut in the function. Therefore, 2mm < Im[Liw] < (2m 4+ 1)7. (29)
sincef is also a bounded function efand K as follows:
Case 2:
837[( - 8f(a:;(, K) . w
oK oK Low = arcsinh X (20)
_ 0w, K) 0w | Of(xw, K) Re[Low] <0 (21)
dr 0K oK , 5
_ Of(zk, K) <1_ af(ng”K))_l (2m+§)7r<hn[£2w]§ <2m—|—§> . (22)
o oK dr
Case 3:
unlessdf(xr, K)/dx = 1, |0z /0K | will also be bounded. W
Whendf(zx, K)/0x = 1, zx corresponds to a pole of Lyw = —arcsinh K (23)
degree 2 or higher. B2 f (zx, K)/0x? # 0, thenz is a pole Re[Lsw] >0 (24)
of degree 2 only, and can only happen at discrete poiriSafd (2m + )7 < Im[Law] < (2m + 2). (25)

«. Fortunately this does not pose a probleni@ais, in general,
a complex value and we can deform the pattikoéround this Case 4:

point. w
Lqw = —arcsinh i74 (26)
lll. TE MODES Re[£4w] <0 (27)
- . . 1
.The qharactgr|st!c equation for the TE mode, in a grounded 2+ = | 1 < Tm[Caw] < (2m + 3 . (28)
dielectric slab, is given by 2 2

(10) wherem is any nonnegative integer. Negative valuesrofire
not considered, as they are a repetition of the solutions for pos-
where itive m, except for a change of sign. The trivial polewat= 0
is also not considered and it correspondsite- —1 for case 2.
up =/ k2 — k2 (11) Special care must be taken whepK is an imaginary quan-
tity. In this case, there might be some ambiguity over the selec-
uy =/ k2 — k3e, (12) tion of the two possible branches available in the mapping. By

Un cosh ush £ 1y sinh ush = 0
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Im{w] ping, both the domain and range shall be set to be the same, as
shown in Fig. 2, or as follows:

Re[w] >0 (29)
Im[w/K]=0 2mr < Im[w] < (2m + )7. (30)

It should be noted that there is a line of discontinuity in the
domain of the problem, which is the straight line betwees 0
andw = jK. Itis shown as the jagged line in Fig. 1.

When2mr > Im[jK], then there is no discontinuity in the
domain of£;. As such, as stated by theorem 2, the condition
required forL; to be a contraction mapping is simply

oc;
ow

Ve < h 1)
It is clear that, if this condition is satisfied, then the operator
Fig. 1. Possible definition of a domain fdr,. can have one and only one unique fixed point due to theorem 1.
The next portion of the complex plane to be considered is the
Im[£,w] part where the domain of; contains part of the discontinuity
(jagged line in Fig. 1), but still satisfies (31).

In this case, the domain daf; is divided into two separate
regions by this line of discontinuity. Fortunately, it can be shown
that there will be no solution to the right of the discontinuity.

By restricting the domain to the portion bounded by the imag-
inary axis and the discontinuity, a contraction mapping that is to-
Re[L,w] tally continuous is obtained again. Hence, a fixed point will be
found within this region. It follows that if{ is a real number,
then the solutiony must lie on the imaginary axis.

We have now shown that when tiig satisfies (31), itis al-
ways convergent, and has one and only one unique fixed point.
Fig. 2. Range and domain &¥, for a specific value ofrn. To analyze the case where the operator does not satisfy (31),

contraction mappings alone will not be adequate. First, by using
taking the limits, it is found that the branch 6f with a larger theorem 4, itcan be shown that the solutions of the characteristic

_‘1

(2m+n

2m+1/2)n

N b

2mn

)
[(4

imaginary part should be chosen. equation must be continuous with respeciipand that there
As an example, choosin§ = 20, and constructing the seriescan only be one solution corresponding to each operator.
{wny1 = Liwn, n > Olw = j} for m = 1, we obtain Therefore, due to theorem 3, at least one of the operator, i.e.,
£ or LT, must be convergent to the location of the fixed point.
wy =7 In general, onlyC; or £3 might require the use of the inverse
wy =9.40648 operator. The other operatofs and.L, are always convergent.

For £, and L3, the ¢ neighborhood of convergence of the

w2 =9.2518; . forward and inverse operators may be very small when (31) is
wg =9.25468) not satisfied; in order to resolve this, the operator is modified
wy = 9.254627 slightly. It is to be used whexf; is nonconvergent as follows:
L
Ll = bi wrw (32)
2
IV. CONVERGENCE OFTE OPERATOR The reason for this operator is due to theorem 3. When this op-

] ) . _ erator is used, the initial starting point should:be= j K.

The only question that remains now is when the mappingsif the above operator is also nonconvergent, then the fol-
are convergent. In this section, the conditions that are reqwqgg{,ing operator is to be used as follows:
for the convergence of these operators are derived. In some in-
stances, the operators might be nonconvergent, and some mod- LM — Liw+w (33)
ifications are to be made. ¢ 2

For brevity, only the part of the proof faf, will be presented. ¢ .5 pe seen that the condition for the convergence of the
The other cases are to be handled in a similar manner. ;

_ i : above operator is

If the domain of the operatof; is defined to be the shaded

area in Fig. 1, then the range 6f is as shown in Fig. 2. How- ‘85’

ever, to be concurrent with the definition of a contraction map- dw 1 (34)

1 1
_‘—2 K2+—w2 +§ <
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Im(z] Im(w] |
(a0 ) y Region H l
Relz]<0 |
| fn"; m b g tm[z]>0
(m+1/2)n
mn

Fig. 3. Behavior ofw = tanh =.

k Relw]

which is a less stringent condition than (31). Fig. 4. Selection of branch cut and largest possible definition of a domain for
The reason for this apparent convoluted chain of operato/‘is'

due to numerical considerations, rather than for any theoretical

reason. a map of thetanh function can be drawn. Fig. 3 shows how
In conclusion, using a combination of the mappings, all tHée arctanh function maps the different regions of the com-

poles associated with the TE characteristics equation can befigx plane onto itself. For instance, by selecting the appropriate

cated. Completeness of the solution is also shown. branch of the mapping, the second quadrant of the complex
plane is mapped byrctanh into the region described by the
V. TM MODES following:

In this section, a similar algorithm for the TM modes is pre-
sented. The algorithm is more complex as the characteristics 1
equation now depends on two parameters rather than one. There mr < Im[z] < <m + —) .
is also similar discontinuity in the mapping, which depends on 2
how the branch cut is chosen in the complex plane.

The TM characteristics equation is given by

Re[2] <0

A. Type-l TM Mapping

The first group of solutions are those that are in the second
(35) quadrant. In order to avoid any discontinuity of the mapping in
the second quadrant, the branch cut is the jagged line, as shown
By means of the substitutiom = wu.h, we obtain the fol- in Fig. 4, and the branch of the square root is the one where the

gpuq cosh ush 4 us sinh ush = 0.

lowing, which forms the basis of the operators: results have a negative real part. This ensures that the result of
taking arctanh also has a negative real part and is confined to
the second quadrant. Therefore, the first operator is as follows:
Vw? 4+ K? .
w
e w? + K2
whereK = kohvy/e, — 1. Kiw = arctanh B (40)
By differentiating the above expression, it is shown that the eVl + K2
convergence of operators based on the above is affected by fol- Re —w <0 (41)
lowing points:
mr < Im[ICiw] < (m+ D)7 (42)
+ Ihoher +ik h\/( 1)+ ! (37) Since the mapping is continuous (by theorem 2), the onl
Wq =L —F——— = I Ep — )
JIte, 0 1+e, y y

condition required for the mapping to be a contraction mapping

Wy Iijkoh\/ Ep — 1. (38) Is
It is noted that the two points may be very close togethey. if ‘3K1w‘ _ K2, <1 (43)
is large. dw VE2+w? [K2e2+w?(e2—1)]

By making use of the following property:

Hence, when (43) is satisfied, a contraction mapping is ob-
sinh 2a + j sin 20 tained, and by theorem 1, each mapping will have a unique fixed
(39 i
cosh 2a + cos 23 point.

tanh(a+ j3) =
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B. Type-Il TM Mapping Im(k, / ko) Relk,/ ko]
Case 2: /1- e 5 e oa—onw
w2 K2 , / / T
Kyw =arctanh Y TET (4g) L0 | e /
w Lim=2) T £1(m=0)
r \Y4 2 K2 - L ( =|) .C4(m=0)
Im [L 20 (45) ! .z:::'m=1) L3(m=0)
W Lim=1)" Lm=0)
1 D\ o
mr < Iim[Kow] < <m + 5) . (46) \V\?Emjg
") il
This operator is to be used when its domain includes the ﬁ“((:;?) o Leaky wave
jagged line shown in Fig. 4 and (43) is satisfied. Dueto the selec- 41+ ? = Guided wave

tion of the branch of the square root, as defined in the operator
itself, the line wherdml[~] = 0 is now selected as the branchrig. 5. Location of TE poles for 10 GHz (= 0.028 ande, = 9.8) showing
cut. Although there is a discontinuity in the mapping, there ie use of theZ} operator form = 2.

no ambiguity because there is no solution in the second quad-

rant for this operator. In fact, the solution lies in the narrow strip Im(k./ ko] / Refk,/ k]
bounded by the jagged line and the imaginary axis. It follows

that, if ¢,. is a real number, the solutian must lie on the imag- / 1 /7‘,
inary axis. Ks'(m=5) T K;g"(":‘i)4)

When the jagged line is no longer included in the domain of &K, (m=5) ; K (m=0)
this operator, the operator does not have a solution. The next Km=5)  Kym=3) x,

1 Ki(m=3)
, _ 1(m=0)
operatork’s to be introduced should be used instead. L Ki(m=2) Ka(m=1)
> %,(m=6) Ky(m=2) Ki(m=1)
C. Type-lll TM Mapping 2 ¥y (m=6)
) Ky(m=T)
Case z b,
) 2 K2 [ u]
Ksw = arctanh A 47)
. . w Fig. 6. Locations of TM poles for 10 GHZ (= 0.028 ands,. = 9.8).
eV + K
Re w 20 (48) Tm(k, / ko] Re[k,/ k]
1 ] o w AL W
<m + 5) 7w < Im[Ksw] < (m + 1)w. (49) /1 f 2 /
Ly(m=2) Li(m=2)
For this operator, the starting point shouldde= [j(m + Lm=2) Lalm=D) £1_(31=0)
(3/4))7 + Q], whereQ) is a sufficiently large number such that 1 L’Z’;i]) / (ﬁ‘;((’)';— )
w is away fromw, andw, and is in region Il of Fig. 4. Lym=1) Lom=0)

This operator is a complement of the previous operator. When
K, cannot be used, as its domain does not include the jagged line ‘\\Ll(m=3)
shown in Fig. 4/C3 should be used. Ly(m=3)

When the domains of the operators do not satisfy (43), the Ly(m=3) o Leaky wave
operators are to be modified as theimeighborhood of conver- o LD ® Guided wave
gence may be small. The following operators are to be used: ; ?

IC;w _ ’Ciw;‘ w' (50) Fig. 7. Location of TE poles for 10 GHzZ (= 0.028 ands, = 9.8 — 0.1).

It should be noted that, in the vicinity af, andw,, both VI. NUMERICAL RESULTS

operators 2 and 3 will have solutions Af, does not converge,

. In this section, some numerical results are presented. The al-
then the inverse operator should be used as follows:

gorithm was able to extract the poles for both the TE and TM
\/wQ tanh? w — K22 poles using a negligible amount of computing time.
! (51) All the poles shown in these examples are extracted in less
" er than 1 s on a Pentium Il 233-MHz computer. The algorithm was
Re[IC5w] 2 0. (52) programmed using Mathematica.

The use of the inverse operator is similar to that of the As are shown in Figs. 5 and 6, when the dielectric is losses,
TE case. The proof of the completeness of the solutions fitie poles are purely real. When the some losses were introduced,
the TM characteristics equation can be similarly constructetie poles will migrate lower down the complex plane, as shown
Where (43) is satisfied, theorems 1 and 2 are used to show thé&igs. 7 and 8. Note that, in the example, as shown in Fig. 5,
uniqueness of the solutions. When the condition is not satisfigbe operator’, does not converge for, = 2 and, hence, the
theorems 3 and 4 are then to be used. operator}, was used.

Ing =
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