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Abstract—In order to obtain accurate closed-form representa-
tions of the microstrip Green’s functions, it is often necessary to
find the locations of the proper and improper surface-wave poles.
In this paper, we present an efficient and robust iterative algorithm
based on contraction mapping, which can locate all the proper and
improper solutions of the characteristics equations of the grounded
dielectric slab. The dielectric may also be lossy.

Index Terms—Contraction mapping, Green’s function,
grounded dielectric slab, improper poles, iterative procedure,
microstrip problems, poles and zeros, proper poles, surface-wave
poles.

I. INTRODUCTION

V ARIOUS analytical and semianalytical techniques have
been developed over the past few decades for obtaining

closed-form spatial-domain Green’s function for microstrip ge-
ometry [4]–[8] from the spectral-domain formulation.

In the spectral-domain formulation, the poles of the Green’s
function for the microstrip correspond to the surface- and
leaky-wave modes. In most of these analysis, the extraction of
some of these poles is usually required. This is a very important
step to derive accurate closed-form Green’s functions when the
source point is relatively far from the field point.

Recently, with the introduction of new geometries such as
low-temperature cofired ceramics (LTCC), it becomes neces-
sary to consider thick substrates, which can support many sur-
face wave modes, thereby highlighting the need to find a tech-
nique to extract these poles. Various authors [1], [2] have applied
the Newton–Raphson method to the problem, and usually con-
sidered only the case where the substrate is lossless.

However, for substrates that are thick and lossy, it may be
difficult to provide suitable initial guesses for some of the poles,
especially those that may lie very close to one another.

Gugliemi and Jackson [3] have used an asymptotic method
that is only valid for low-frequency approximations.

In this paper, a systematic algorithm that can locate all the
surface- and leaky-wave poles is proposed.

The proposed algorithm is based on a well-known technique
in functional analysis, known as “contraction mapping.” We
shall also prove the completeness of this method and, hence,
show that the location of all the poles (proper and improper) of
such a Green’s function can be found using this method. The
substrate is assumed to be lossy.
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II. THEORY

The following theorems to be introduced will form the basis
of the proof of convergence and completeness of the proposed
algorithm.

Theorem 1 (Fixed Point Theorem):Let be a mapping of
any metric space into itself. is then called a fixed point of

in if it satisfies the following equation [9]:

(1)

If has the additional property that for any

(2)

then is known as a contraction mapping, and will always
have one and only one fixed point. This technique is often called
the method of successive approximations.

In general, if is a contraction mapping with domain, the
solution of is given by

(3)

where is any point in .
Theorem 2: If is a continuous mapping in a metric space
that mapsinto itself, then it is a contraction mapping if its

first derivative exists and has a magnitude of less than unity
throughout the region , i.e.,

for all (4)

This theorem can be proved by noting that any line trans-
formed by such a mapping will have a shorter length if the above
condition is satisfied.

Theorem 3: Let be a continuous function that satisfies the
following:

(5)

(6)

The inverse operator , if it exists, will then satisfy the fol-
lowing:

(7)

If has a fixed point , then there must exist anneigh-
borhood of such that
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or

Proof: Suppose that there does not exist such a neighbor-
hood. Then

(8)

and

(9)

Due to (8), , and due to (9), . However,
since , . Hence, a contradiction results.

It follows from this theorem that, if there exist a fixed point
for in , then at least one of the operator or must
be convergent to the fixed point, about anneighborhood of the
fixed point.

Theorem 4 (Continuity of Solutions):The set solutions of
the characteristics equations, including those in the second Rie-
mann sheet, is a continuous function of all the parameters, ex-
cept at possibly discrete points.

The can be shown by rewriting the characteristics equation
into the following form:

where can be any one of the parameters andis a solution
of the characteristics equation. It is known that the functionis
analytic in terms of and , and if the second Riemann sheet is
included, then there is no branch cut in the function. Therefore,
since is also a bounded function ofand as follows:

unless , will also be bounded.
When , corresponds to a pole of

degree 2 or higher. If , then is a pole
of degree 2 only, and can only happen at discrete points ofand

. Fortunately this does not pose a problem asis, in general,
a complex value and we can deform the path ofaround this
point.

III. TE M ODES

The characteristic equation for the TE mode, in a grounded
dielectric slab, is given by

(10)

where

(11)

(12)

is the thickness of the substrate andis the complex relative
permittivity of the substrate.

As the zeros of the above equation is independent of the
branch of selected, we can make the substitution
to obtain

(13)

where

(14)

Hence, taking square root of the components, we obtain for
the two branches

(15)

Taking the inverse of (15), we obtain

(16)

By a careful analysis of the way the functions are mapped
by the function, we postulate that the solutions can be
obtained by constructing contraction mappings out of each dif-
ferent branch of the function such that the fixed points of these
mappings are the solution of the characteristics equation. The
mappings are classified into the following four main categories.

Case 1:

(17)

(18)

(19)

Case 2:

(20)

(21)

(22)

Case 3:

(23)

(24)

(25)

Case 4:

(26)

(27)

(28)

where is any nonnegative integer. Negative values ofare
not considered, as they are a repetition of the solutions for pos-
itive , except for a change of sign. The trivial pole at
is also not considered and it corresponds to for case 2.

Special care must be taken when is an imaginary quan-
tity. In this case, there might be some ambiguity over the selec-
tion of the two possible branches available in the mapping. By
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Fig. 1. Possible definition of a domain forL .

Fig. 2. Range and domain ofL for a specific value ofm.

taking the limits, it is found that the branch of with a larger
imaginary part should be chosen.

As an example, choosing , and constructing the series
, for , we obtain

...

IV. CONVERGENCE OFTE OPERATOR

The only question that remains now is when the mappings
are convergent. In this section, the conditions that are required
for the convergence of these operators are derived. In some in-
stances, the operators might be nonconvergent, and some mod-
ifications are to be made.

For brevity, only the part of the proof for will be presented.
The other cases are to be handled in a similar manner.

If the domain of the operator is defined to be the shaded
area in Fig. 1, then the range of is as shown in Fig. 2. How-
ever, to be concurrent with the definition of a contraction map-

ping, both the domain and range shall be set to be the same, as
shown in Fig. 2, or as follows:

(29)

(30)

It should be noted that there is a line of discontinuity in the
domain of the problem, which is the straight line between
and . It is shown as the jagged line in Fig. 1.

When , then there is no discontinuity in the
domain of . As such, as stated by theorem 2, the condition
required for to be a contraction mapping is simply

(31)

It is clear that, if this condition is satisfied, then the operator
can have one and only one unique fixed point due to theorem 1.

The next portion of the complex plane to be considered is the
part where the domain of contains part of the discontinuity
(jagged line in Fig. 1), but still satisfies (31).

In this case, the domain of is divided into two separate
regions by this line of discontinuity. Fortunately, it can be shown
that there will be no solution to the right of the discontinuity.

By restricting the domain to the portion bounded by the imag-
inary axis and the discontinuity, a contraction mapping that is to-
tally continuous is obtained again. Hence, a fixed point will be
found within this region. It follows that if is a real number,
then the solution must lie on the imaginary axis.

We have now shown that when the satisfies (31), it is al-
ways convergent, and has one and only one unique fixed point.

To analyze the case where the operator does not satisfy (31),
contraction mappings alone will not be adequate. First, by using
theorem 4, it can be shown that the solutions of the characteristic
equation must be continuous with respect to, and that there
can only be one solution corresponding to each operator.

Therefore, due to theorem 3, at least one of the operator, i.e.,
or , must be convergent to the location of the fixed point.

In general, only or might require the use of the inverse
operator. The other operators and are always convergent.

For and , the neighborhood of convergence of the
forward and inverse operators may be very small when (31) is
not satisfied; in order to resolve this, the operator is modified
slightly. It is to be used when is nonconvergent as follows:

(32)

The reason for this operator is due to theorem 3. When this op-
erator is used, the initial starting point should be .

If the above operator is also nonconvergent, then the fol-
lowing operator is to be used as follows:

(33)

It can be seen that the condition for the convergence of the
above operator is

(34)



TEO et al.: COMPLETE LOCATION OF POLES FOR THICK LOSSY GROUNDED DIELECTRIC SLAB 443

Fig. 3. Behavior ofw = tanh z.

which is a less stringent condition than (31).
The reason for this apparent convoluted chain of operator is

due to numerical considerations, rather than for any theoretical
reason.

In conclusion, using a combination of the mappings, all the
poles associated with the TE characteristics equation can be lo-
cated. Completeness of the solution is also shown.

V. TM M ODES

In this section, a similar algorithm for the TM modes is pre-
sented. The algorithm is more complex as the characteristics
equation now depends on two parameters rather than one. There
is also similar discontinuity in the mapping, which depends on
how the branch cut is chosen in the complex plane.

The TM characteristics equation is given by

(35)

By means of the substitution , we obtain the fol-
lowing, which forms the basis of the operators:

(36)

where .
By differentiating the above expression, it is shown that the

convergence of operators based on the above is affected by fol-
lowing points:

(37)

(38)

It is noted that the two points may be very close together if
is large.

By making use of the following property:

(39)

Fig. 4. Selection of branch cut and largest possible definition of a domain for
K .

a map of the function can be drawn. Fig. 3 shows how
the function maps the different regions of the com-
plex plane onto itself. For instance, by selecting the appropriate
branch of the mapping, the second quadrant of the complex
plane is mapped by into the region described by the
following:

A. Type-I TM Mapping

The first group of solutions are those that are in the second
quadrant. In order to avoid any discontinuity of the mapping in
the second quadrant, the branch cut is the jagged line, as shown
in Fig. 4, and the branch of the square root is the one where the
results have a negative real part. This ensures that the result of
taking also has a negative real part and is confined to
the second quadrant. Therefore, the first operator is as follows:

Case 1:

(40)

(41)

(42)

Since the mapping is continuous (by theorem 2), the only
condition required for the mapping to be a contraction mapping
is

(43)

Hence, when (43) is satisfied, a contraction mapping is ob-
tained, and by theorem 1, each mapping will have a unique fixed
point.
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B. Type-II TM Mapping

Case 2:

(44)

(45)

(46)

This operator is to be used when its domain includes the
jagged line shown in Fig. 4 and (43) is satisfied. Due to the selec-
tion of the branch of the square root, as defined in the operator
itself, the line where is now selected as the branch
cut. Although there is a discontinuity in the mapping, there is
no ambiguity because there is no solution in the second quad-
rant for this operator. In fact, the solution lies in the narrow strip
bounded by the jagged line and the imaginary axis. It follows
that, if is a real number, the solutionmust lie on the imag-
inary axis.

When the jagged line is no longer included in the domain of
this operator, the operator does not have a solution. The next
operator to be introduced should be used instead.

C. Type-III TM Mapping

Case 3:

(47)

(48)

(49)

For this operator, the starting point should be
, where is a sufficiently large number such that

is away from and and is in region II of Fig. 4.
This operator is a complement of the previous operator. When
cannot be used, as its domain does not include the jagged line

shown in Fig. 4, should be used.
When the domains of the operators do not satisfy (43), the

operators are to be modified as theirneighborhood of conver-
gence may be small. The following operators are to be used:

(50)

It should be noted that, in the vicinity of and , both
operators 2 and 3 will have solutions. If does not converge,
then the inverse operator should be used as follows:

(51)

(52)

The use of the inverse operator is similar to that of the
TE case. The proof of the completeness of the solutions for
the TM characteristics equation can be similarly constructed.
Where (43) is satisfied, theorems 1 and 2 are used to show the
uniqueness of the solutions. When the condition is not satisfied,
theorems 3 and 4 are then to be used.

Fig. 5. Location of TE poles for 10 GHz (h = 0:028 and" = 9:8) showing
the use of theL operator form = 2.

Fig. 6. Locations of TM poles for 10 GHz (h = 0:028 and" = 9:8).

Fig. 7. Location of TE poles for 10 GHz (h = 0:028 and" = 9:8� j0:1).

VI. NUMERICAL RESULTS

In this section, some numerical results are presented. The al-
gorithm was able to extract the poles for both the TE and TM
poles using a negligible amount of computing time.

All the poles shown in these examples are extracted in less
than 1 s on a Pentium II 233-MHz computer. The algorithm was
programmed using Mathematica.

As are shown in Figs. 5 and 6, when the dielectric is losses,
the poles are purely real. When the some losses were introduced,
the poles will migrate lower down the complex plane, as shown
in Figs. 7 and 8. Note that, in the example, as shown in Fig. 5,
the operator does not converge for and, hence, the
operator was used.
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Fig. 8. Location of TM poles for 10 GHz (h = 0:028 and" = 8 � j0:2)
showing the use of theK operator form = 4.

VII. CONCLUSION

In this paper, we have demonstrated the use of the method of
successive approximations or contraction mapping to locate the
solutions of characteristics equations of microstrip structures.

The usefulness of this technique lies in the proof of the ex-
istence and uniqueness of the solutions. This will facilitate the
use of techniques based on Cauchy’s residue theorem to eval-
uate the Sommerfeld integral.

An application of this algorithm would be for deriving
closed-form spatial-domain Green’s function using the discrete
complex image method (DCIM). It is known that the accuracy
of the Green’s functions derived using the DCIM in the far-field
region depends on whether all the guided wave poles have been
extracted.

The algorithm is also able to overcome the difficulties asso-
ciated with the extraction of pairs of poles that are sometimes
located very close to each other.
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